Bush River 115kV Crossing Rebuild

Tiffany Matthews-Lay & Kevin Elveton Project Management

Agenda

- Team Introduction
- Project Overview
- Project Necessity
- Route Determination
- Existing Line Overview
- Proposed Solution
- Environmental Mitigation
- Schedule
- Questions/Discussion

Project Team

- Baltimore Gas & Electric Company- Owner/Applicant
- McCormick Taylor Environmental Consultant
- Burns & McDonnell Project Management
- Power Engineers Engineering/Project Design

Proposed Bush River Project

- Rebuild the Bush River Crossing
 - Remove 7 existing "lattice" structures
 - Install 9 new mono-pole structures and foundations
 - One structure located in Bush River
 - New conductor
 - 1.1 miles long
 - Additional easements required
 - Construction starts September 2021

Bush River Crossing

Necessity

- Improve reliability and safety of the transmission line to communities
- The existing transmission line consists of two circuits constructed in 1951 and has experienced substantial reliability and risk problems
 - Severe avian contamination
 - Severe foundation degradation was discovered after an inspection in 1991
 - Mariner safety

Structural Reliability and Safety

- In 1991, these tower foundations were inspected and severe degradation was discovered
- Repairs were made in 1991 by
 - Installing cofferdams
 - Splinting the pipes back together using new steel and grout
 - Encapsulating the piles
- The encapsulation prevents further inspection of the steel piles
- Project reports indicate an expected 25year life span for the repairs – currently in year 29

Boat Safety

- Lower clearance in existing line
- The line has had a history of sailboat contacts
 - An incident In the late 1960s
 - In June 2000, a sailboat slipped from its mooring and contacted the lines, causing an outage and the total loss of the vessel (no one was on board)
 - In August 2002, another sailboat drifted into the lines

Avian Challenges

- 9 outages (2009-2019) were line-initiated, all 9 occurred within the Bush River Crossing
 - 8 outages were avian interference
 - 7 outages involved bird nest debris
 - 1 outages bird droppings
 - 1 unknown outage
- Momentary outage on 5/10/2017 led to the discovery of a LARGE colony of cormorants
 - Numerous nests
 - Significant contamination found on the insulators, conductors, tower steel, and foundations
 - According to the USDA-APHIS, there are no totally effective ways to keep the cormorants from inhabiting the tower

Avian Challenges (cont.)

- During the inspection, an active osprey nest was also found on tower 56 (Perryman side)
- Insulators were replaced and "guano shields" were installed, but due to the liquid state of the contaminant and the steady wind, the shields were not entirely effective
- Coexisting with cormorants means accessing a severely "contaminated" tower, maneuvering around mildly aggressive birds, and maintaining insulators and conductors that will continue to become contaminated

Route Determination

- BGE reviewed several possible alternatives
 - Overhead Construction
 - Submarine Cable Installation (Underground Construction)
 - Horizontal Directional Drill (Underground Construction)
- Evaluation Considerations
 - Tree clearing requirements, critical area impacts, wetland impacts
 - Overall project cost
 - Maintenance costs
 - Consideration of adjacent utilities (existing T-line, forced sewer main)
 - Ease of maintenance/repair outage duration
 - Shorter construction period
 - Constructability
 - Operational reliability
- All alternatives require:
 - State and local permits
 - Easements from the Aberdeen Proving Ground (APG) and Constellation
 - Environmental mitigation

Existing Edgewood to Perryman Transmission Lines

- Built in 1951 to support the APG load after WWII
 - 6.59 miles from Edgewood to Perryman
 - Two single circuit wood pole H-frame lines
 - Short sections of double circuit lattice towers, including the Bush River crossing
- The Existing Bush River crossing
 - Two spans supported by three double circuit (horizontally-configured) lattice towers
 - The two spans are approximately 2000 ft each
 - The middle tower is located in the middle of Bush River
 - Pile and cap foundations
 - Existing structures range in height from 110-115'

Proposed Solution

Removal

- Three double circuit steel lattice towers (one on each shore and one located within Bush River)
- Four single circuit wood Hframes (two on each side of the river)
- Existing conductor (4 spans total)

Install

- 4 new single circuit structures at each bank,
- 1 double circuit structure at mid-span in Bush River on pile foundation
- New section will be built parallel to the existing line to minimize outage impacts
- Design clearance of 49.1 ft (40 ft safe vessel height)

Proposed Solution – Each Bank

Removal

- Three double circuit steel lattice towers (one on each shore and one located within Bush River)
- Four single circuit wood Hframes (two on each side of the river)
- Existing conductor (4 spans total)

Install

- 4 new single circuit structures at each bank
- New conductor (4 spans)
- Caisson foundations on land
- Pole caps will be used to deter birds from nesting on structures

Renderings

Renderings

Proposed Solution

Environmental Mitigation

- Required to mitigate all environmental impacts
- Mitigation plans will be developed with Harford County and the Maryland Department of Environment and Department of Natural Resources and will address:
 - Restoring areas where existing structures are removed
 - Planting new trees
 - Restoring the Critical Area Buffer
 - Requiring contractor to use Best Management Practices during construction activities
 - Ensuring the construction schedule takes the wildlife impact into consideration

Project Schedule

- All Necessary Permits Received
- Tree clearing and foundations
- Erect Steel Structures
- Energize New Circuits
- Demolition of Existing Structures

Second Quarter, 2021 Third Quarter, 2021 Fourth Quarter, 2021 April 2022 - May 2022 September 2022 - November 2022

- Schedule Considerations
 - Water restrictions
 - Nesting bird (FID) restrictions in tree removal area
 - Nesting bird (Osprey) restrictions on the existing structure
 - No outages permitted in the first quarter

Project Summary

- Improve reliability and safety of the transmission line to communities
 - Raise the conductor for marine safety
 - Replace deteriorating foundations
 - Reduce avian presence and impact
 - Improve line maintenance and operations
 - Environmental mitigation
 - Replant trees
 - Restore critical areas
 - Construction plan and schedule
- Permitting Process is just beginning
 - Other opportunities for public engagement

Questions from the Public

Open Discussion

